
INTERNATIONAL JOURNAL OF ENGINEERING EDUCATION (IJEE)
ISSN: 0949-149X May-June2017 Vole 9, No 3
www.sweetmaxwell.org

Analyzing Efficiency of GPU for Executing High Performance Computing

Applications

Fatemehossadat Rezvaninejad1, Fahimeh Yazdanpanah2

1Bachelor student, Computer department, Faculty of Engineering, Shahid Bahonar university of Kerman

 rezvaninezhadf@gmail.com

2 Assistant Professor of Computer department, Faculty of Engineering, Shahid Bahonar university of Kerman

 yazdanpanah@uk.ac.ir

Abstract

Nowadays, given the increased function of computers and the need for humanity to do more work

in their work the need for the processors to be implemented in a way that allows the

implementation of several software at the same time as the speed to ideal ratio has been created.

The need for computer engineers to do graphic work of high computing time such as photoshop,

animation and etc. has also been instrumental in understanding and developing the CUDA parallel

graphics and graphics processor. Cuda is a parallel programming language for the graphics

processor which can be used in programs with high computational levels to write the program in

such a way that the GPU and processor are both part of the implementation of the share until its

implementation is reduced find out knapsack problems and image processing today are of great

importance. The volume of their calculations increases the run time. In this paper we try to explain

the role and importance of Cuda programming in the knapsack problem and image processing.

The knapsack problem examines how objects with different weights and values are located in a

single-hulled backpack, with the backbone of the highest value. However different approaches are

provided according to the type of backpack. In the image processing the fading methods of the

images have been discussed.

Keywords: GPU, CUDA, Knapsack problem, Binary knapsack, Image processing, Blurring.

1- Introduction

The faster and cheaper the computers and the ability to broadcast images with the communications

technology the more people they have access to. Video conferencing has become a dynamic way

to do business and home computers can display and manage images well. Fortunately, with the

speed of processing and memory of computers in terms of image processing facilities, concerns

have been reduced in this case and this trend continues. The science of image processing is one of

the most widely used science in engineering and many studies and studies have been done in the

past and many improvements have been made. The rapid development of these developments has

been so high that now and after a short time the impact of image processing can be clearly seen in

mailto:rezvaninezhadf@gmail.com
mailto:yazdanpanah@uk.ac.ir

INTERNATIONAL JOURNAL OF ENGINEERING EDUCATION (IJEE)
ISSN: 0949-149X May-June2017 Vole 9, No 3
www.sweetmaxwell.org

many sciences and industries. While some of these uses they are dependent on image processing

without it being usable.

Nowadays image processing has become widely used in expanding the various discrete

information-processing methods such as scanners and digital cameras. The images obtained from

this information always have some noise and in some cases they also have the problem of blurring

the boundaries inside the image which reduces image quality. The image processing is called

image processing which is used to reduce defects and improve the quality of the image such as

rebuilding noisy images, compressing and encrypting images and understanding the image by the

machine.

Graphics processors are used on many devices such as smartphones and personal computers.

Modern graphics processors are highly effective in controlling the graphics of computers and their

balanced structure makes them more efficient than multi-core main processors [1]. In 1999, Nvidia

introduced the geforce 256 processor as the world's first graphics processor. The geforce 256 was

an integrated single processor processor with render engines that had a processing power of at least

10 million polygons per second. Nvidia's commercial rival, ATI technologies, uses the term visual

processing unit (VPU) and shipped the 2700 radeon product in 2002 [1].

The graphics processor includes millions of transistors which is much larger than the transistors in

the central processing unit. Today's GPU is used to accelerate applications that are used to process

large data. Prior to 1970 the central processing unit was responsible for computing and interpreting

images and given the fact that the interpretation of their images required a lot of processing power

the speed of the core processor was greatly reduced. After that, graphical processing units were

designed and constructed. The number of cores in the GPU is much higher than the number of

cores in the core processor which makes it easy to perform calculations on a GPU than the CPU.

The control unit and CPU cache are larger than the controller unit and the GPU cache memory.

The central processor allocates more transistors to the information processing. The graphics

processor is used in parallel programming much more than the central processor and it should be

noted that the GPU does not replace the central processor because there are simple algorithms that

are more effective on the CPU than the CPU. GPUs are running.

To interface with the graphics processor and coding in it we need to have a soft layer called cuda

in parallel. In fact, cuda is the parallel computing architecture of Nvidia. cuda is a parallel

programming language with a graphics processor that boosts processing speed and reduces

execution time.

The programming process is used to map information elements to parallel processing threads.

While the graphics processor has its own advantages, programmers initially have a lot of problems

with the transfer of algorithms from the central processing unit to graphics processors were faced.

Given that the graphics processor was built for graphic processing and video games, it behaved in

accordance with the programming environment and the developer needed a deep understanding of

the programming interface and graphics architectural interface, usually these application

programming interfaces which is written on the platform.

Cuda is a parallel computing platform and a programming model that was invented by Nvidia.

Cuda is a demonstrable demonstration of the implementation of the calculations in order to control

the power of the graphical processing unit [2]. Cuda has been developed for the purpose of

designing several purposes:

INTERNATIONAL JOURNAL OF ENGINEERING EDUCATION (IJEE)
ISSN: 0949-149X May-June2017 Vole 9, No 3
www.sweetmaxwell.org

 Provide a small set of extensions of standard programming languages such as C that can

implement a direct algorithm. Programmers can focus on parallelization of the algorithm

by CUDA C / C over time spent on their execution [2].

 Support for heterogeneous computing: support is available where the applications use the

main processor and graphics processor. Here the class part runs on the main processor and

the parallel part on the graphics processor. Each has its own storage space. These settings

allow simultaneous computing on the original processor and graphics processor without

competing in memory resources [2].

 The graphics processor has hundreds of cores that can run thousands of computing threads

altogether. These cores have shared resources such as a stable file and a shared memory.

The shared memory on the chip allows parallel operations on these cores to share data

without sending it through the system memory bus [2].

2- knapsack problem in cuda

The knapsack problem has been studied for more than a century [3]. The knapsack problem is a

component of optimization. Suppose we have sets of objects, each of which has a certain weight

and value. To each object, numbers are allocated in such a way that the weight of the objects

selected is less than or equal to the specified value and their value is maximized. The reason for

naming this issue is tourism with a limited size knapsack and should fill it with the most useful of

objects. There are usually financial constraints in allocating resources.

How is the knapsack problem? Imagine that tourists want to fill their knapsack by choosing the

possible scenarios from the variety of things that it provides the most. Which items are in the top

priority for knapsack to be the most significant?

2-1 Dynamic programming

If all the weights (w1,w2,…,wn,W) are nonnegative integers the knapsack problem in the case of a

polynomial pseudo is capable of solving using dynamic programming [4]. For simplicity assume

all weights are positive (wi>0). Here the sum of the value of the selected maximal goods is

demanded, assuming that the total weight of them is max. W. Now if for each w <W the value of

m [w] is defined as the maximum acquisition value so that the total weight of the objects selected

is at most W then obviously m [w] is the desired answer.

m [w] has the following features:

m [0]=0 (Total members of the collection are empty, empty).

m[w] = max(vi + m[w − wi]) that vi is the value of the i-th object.

The maximum value of the empty set is zero. To calculate each of m [w], you must examine the n

object. Also the array W, m has an element so the execution time for this algorithm is O (nW).

Obviously by dividing w1, w2, ..., W by their largest common parabola, one can optimize the

execution time of the algorithm [4]. The convolution of O (nW) is not a contradiction with the NP-

COMPLETE knapsack problem since W is not polynomial in contrast to n. The length of the input

w is proportional to the number of bits needed to display W, logW, not W.

2-2 Greedy approximation algorithm

The zero and one approach: an object or completely falls into the knapsack or not.

INTERNATIONAL JOURNAL OF ENGINEERING EDUCATION (IJEE)
ISSN: 0949-149X May-June2017 Vole 9, No 3
www.sweetmaxwell.org

Fragmentation: you can put a part of an object in a collar, for example, you can put two-thirds of

an object in a knapsack. Suppose S sets the existing objects. The value of p is the value of an

object, w is the weight of the object and W is the weight that the knapsack can tolerate.

Zero and one: the first method is to get all the subsets of S out of the range and then select among

the sub-sets that have the highest value and the weight of the objects is not more than the backpack

weight. Is this the right way? The answer is definitely not good. The number of subsets of a n-

member set is 2n, as it is clear that this path is not suitable for large sets. But what is the solution?

one of the ways in previous articles has been to arrange items in order of weight and then put the

most in a backpack. This method is also not accepted, because if a device is worth more but its

weight is less than the rest or in reverse the result is not necessarily the optimal result of the

problem [1].

Another solution that has been proposed is the same way that is, instead of being sorted according

to weight we arrange it in value but the result of this method is not optimal, as in the above manner.

Because objects that are worth more may have more weight and if placed in a backpack the optimal

result is not necessarily achieved. Because the value of several lighter objects may be greater than

the value of a large object. So it does not always give an optimal answer [1].

Another solution seeks to solve the failure of the above methods, this way it is said that objects

should be in a backpack based on a certain ratio derived from the value to weight ratio. In this way

the problems mentioned above are not created. Because there is a ratio, objects are in a backpack

in terms of the value to weight ratio so if a value is more valuable and less weight there is a greater

chance of being in the backpack [1]. To do this, in the first step the value to weight ratio must be

achieved for all things and then arranged them and objects that have a higher proportion are first

placed in the backpack until the weight of the objects in the backpack is greater than W do not be.

Fragmentation: in this way, a part of the objects can be placed inside the backpack, for example,

two thirds of an object in a backpack [1]. It is like the same way as the value to weight ratio but in

the end, if the total value of the objects in the backpack is less than the backpack weight and this

weight is less than the weight of an object, you can place a piece of the object in a backpack. This

method has a better outcome than previous methods. Is this an example of a breach that is proved

to be always not an optimal result?

If there are n objects that have been numbered from 1 to n. The i-th object has a value of v and

weighs in w weights and values are generally assumed to be non negative. To simplify the display

without diminishing the overall problem, it can be assumed that the objects are arranged in order

of magnitude in terms of their weight. The most weight you can carry in a backpack is W [1].

The most common type of this problem is knapsack problem 0 and 1, that is the number of each

object is 0 (we do not select that object) or 1 (that object is selected). Knapsack problem 0 and 1

can be expressed in this way in mathematical language: maximize the value of ∑ vixi
n
i=1 So that :

∑ 𝑤𝑖𝑥𝑖
𝑛
𝑖=1 ≤ 𝑊 , 𝑥𝑖 ∈ {0 , 1} (1)

A knapsack problem with boundary is another version of the question in which the number of

objects (xi) is a numerical integer and non-negative integer and is maximally equal to Ci. In

mathematical terms, maximize the value of ∑ vixi
n
i=1 such that:

∑ 𝑤𝑖𝑥𝑖
𝑛
𝑖=1 ≤ W , 𝑥𝑖 ∈ {0, 1, … , Ci} (2)

A knapsack problem without boundaries does not limit the number of objects that is, from any

object to any arbitrary number can be chosen. A version of this most relevant question has the

INTERNATIONAL JOURNAL OF ENGINEERING EDUCATION (IJEE)
ISSN: 0949-149X May-June2017 Vole 9, No 3
www.sweetmaxwell.org

following features: A decision problem is the problem 0 and 1, for each object the weight and

value are equal to wi = vi

In terms of computer science the attention to the knapsack problem has been specially considered

because it has an algorithm with a polynomial pseudo time using dynamic programming and also

has an approximate polynomial valued algorithm that uses polynomial pseudo time algorithms as

a sub program. The exact solution of this question is NP-COMPLETE so there is no prediction

that a solution that is simultaneously true and fast (with the polynomial execution time) for each

arbitrary input.

2-3 Coverage relations in the knapsack problem without boundary

In solving the knapsack problem without invoking, putting things that are never used can be

simplified. For example, suppose for an object such as i one can find a subset of objects named J

in such a way that their total value is greater than i and their total weight is less than i so i can not

an optimal answer is found. At this time we will cover the collection J. (note that this argument

can not be used for the boundary problem of the backbone since it may have already been used

and completed from the objects of the constructor J set [1]. Finding covering relationships can help

the volume of search space can be reduced to a large extent. There are various types of covering

relationships that all apply to the following inequality [1]:

x ∈ Z+
n and ∑ vjxj ≥ αvI j∈J for some, ∑ wjxj ≤ αwij∈J (3)

that: 𝐽 ⊆ 𝑁 ، 𝛼 ∈ 𝑍+ ،𝑖 ∉ 𝐽 ,𝑥𝑗 .The number of choices for an object is represented by the type j

(note that these js are members of J set.

2-3-1 Optional Coverage

The object i is selectively covered by J, if the sum of the weight of a set of members of J is less

than wi and their sum of value is greater than vi, its mathematical expression is this:

α = 1 that x ∈ Z+
n in case ∑ vjxj j∈J ≥ vi , ∑ wjxjj∈J ≤ wi (4)

This kind of overlays is not so easy to calculate in terms of computational computation so the best

practices are a dynamic solution. In fact, this is a knapsack problem but with smaller parameters

that are as follows:

V = vi, W = wi and objects bounded by the set J the mathematical symbol of the constitutive

constituency is chosen as follows [1].

2-3-2 Extreme Coverage

The object i is partially covered by J If the number of objects of type i by J is covered, it is

mathematical expression:

α ≥ 1 , 𝑥 ∈ 𝑍+
𝑛 in case ∑ 𝑣𝑗𝑥𝑗𝑗∈𝐽 ≥ α𝑣𝑖 and ∑ wjxjj∈J ≤ αwi (5)

This type of coverage is not a more comprehensive representation of selective overlays and is used

in the EDUK algorithm. The smallest α is called the limit i. In mathematical terms:

𝑡𝑖 = (𝛼 − 1)𝑤𝑖 (6)

In this case the maximum optimal response can be included in the number of α-1 objects of type i

[1].

2-3-3 Multiple Surfaces

INTERNATIONAL JOURNAL OF ENGINEERING EDUCATION (IJEE)
ISSN: 0949-149X May-June2017 Vole 9, No 3
www.sweetmaxwell.org

The object i is multiplied by the object j if i is covered by a number of objects of type j. In terms

of the following:

xj ∈ Z+ for vjxj ≥ vi , wjxj ≤ wi that J = {j} , α = 1, xj = ⌊
wi

wj
⌋ (7)

This coating can be used to optimize the solution, since the detection of the covering relationships

of this kind does not require much computation and is relatively simple [1].

2-3-4 Modular Coverage

Suppose b is the best object, that is, for all i, b.
vb

wb
 ≥

vi

wi
 is an object with the highest density. The

i-th object is covered modularly by object j if it is covered by j and a number of objects of type b

(object i is only covered by j and a number of objects of type b and there is no need to use other

objects). Math is like this.

vj + tvb ≥ vI , wj + twb ≤ wI (8)

That: J = {b, j}, α = 1, xb = t, xj = 1

The mathematical symbol of modular overlays is as i ≪= j [1].

3- Image processing

The processing of images has a major pocket enhancement of image and machine vision. Image

enhancement involves techniques such as using a fader filter and increasing contrast to enhance

the visual quality of images and ensure that they are displayed correctly in the destination

environment (such as a printer or computer monitor). While the machine vision is in ways that can

help them understand the meaning and content of the images to be used in robotic tasks.

3-1 Computer vision

Computer vision is one of the most modern and diverse branches of artificial intelligence that

combines computer image processing techniques and machine learning tools with the ability to

visualize objects, landscapes and intelligent understanding of their various features. Visual AI

applications, machine learning, machine exploration in information, machine exploration in texts

soft computing, fuzzy logic, image processing.

3-1-1 Main tasks in computer vision:

1. Object detection: detect the presence or mode of an object in an image, for example:

 Search for digital images based on their content (image centered retrieval)

 Identify human faces and their position in photos

 Estimation of the 3D state of humans and their organs

2. Tracking: tracking known objects among a number of images straight away. For example,

following a person when he walkes into a shopping mall.

3. Landscape interpretation: making a model of ani. For example, building a model from the

periphery with the help of images taken from the camera mounted on a robot.

4. Auto-location: specify the location and movement of the camera as a computer vision member

such as routing a robot in the museum.

3-1-2 Computer vision systems:

INTERNATIONAL JOURNAL OF ENGINEERING EDUCATION (IJEE)
ISSN: 0949-149X May-June2017 Vole 9, No 3
www.sweetmaxwell.org

A computer system can be divided into the following subfields:

1. Imaging: an image or sequence of images taken with a shooting system (camera, radar,

tomography system). Usually the imaging system should be set before use.

2. Preview: the image is exposed to the "low level" function in its preprocessing step. The goal of

this step is to reduce noise and reduce the overall amount of information. This is accomplished by

employing a variety of digital image processing techniques such as image sampling, digital filters,

gradient x and y calculations and possibly gradients, image segmentation, pixel threshold

calculation, Fourier transform, estimation of movement for local areas the image, also known as

light flow estimation, estimates the discrepancy in highlighting and multi dimensional images.

3- Feature extraction: the purpose of the feature extraction is to turn raw information into a better

form for subsequent statistical processing. In fact, in order to distinguish from the patterns of an

image or the creator of that image there must be a number of generic or specific features of the

image that they call extraction of the feature. For example, in identifying signatures by image

processing, a number of features (such as line gradients) are extracted from the scanned image by

which the signature can be identified. border detection extraction of corner features, extracting

images The rotation of deep maps the acquisition of alignment lines and possibly the passage of

bending zeros are part of the use of feature extraction.

3-2 Image processing

The distinct boundary between image processing on the one hand and the machine vision can not

be determined on the other hand However it can detect three types of low level, mid level and high

level processing.

 Low level processing includes basic processes such as preprocessing to remove Noise,

improve contrast and image filtering. The characteristic of this kind of processing is that

the input and output are image.

 Intermediate processing involves segmentation of the image in order to divide it into

different areas and objects, describing objects in a way that is suitable for computer

processing and categorizing or recognizing various objects. The characteristic of this

process is that its input is usually the image and output of attributes of image objects such

as edges, contours and objects.

 High level processing involves understanding the relationships between detected objects

the interpretation of the scene and the interpretation and diagnosis that the human eye

system does. Many high level processes are in the field of machine vision.

In fact, image processing is a kind of signal processing the input of which is an image and the

output can be an image or anything that is related to the image. Changing the color of a color

to gray image is an example of image processing and fingerprint recognition is another

example of image processing applications. Most image processing is applied to the entire

image and similar steps apply continuously to all image pixels. An image can be represented

by a two dimensional function f (x, y) where y and x are the spatial coordinates and the value

of f at each point. The intensity of the image illumination in That point is called. The term gray

level also refers to the high brightness of monochrome images. Color images also consist of a

number of two-dimensional images [1]. When the values of x and y and the value of f (x, y)

are expressed in terms of discrete and finite values they call the image a digital image.

Digitizing x and y values are gradual sampling and digitization of the value of f (x, y). A digital

image is composed of a number of finite elements with different amounts and positions. These

INTERNATIONAL JOURNAL OF ENGINEERING EDUCATION (IJEE)
ISSN: 0949-149X May-June2017 Vole 9, No 3
www.sweetmaxwell.org

elements are called pixels. Digital image processing involves applying various processes to a

digital image using a digital computer.

3-2-1 image processing on serial and parallel processors

In this section we discuss the role of the serial processor and parallel processor in image

processing. Image processing to run on a GPU is ideally suited for any pixel can directly be placed

on a separate thread. In processing the image of the graphics processor and the main processor

play separate roles in the following order:

Main processor: taking pictures (camera), graphics processor: processing, main processor:

operations related to processing results, main processor: erase memory

3-3 Fade Box

The dark box, also known as the linear filter box is a spatial linear domain filter whose each pixel

in the output image has a value equal to the average values of its neighbors in the input image.

This filter is a low pass filter. A box of 3 to 3 can be written as the 9.1 matrix [15].

1

9
⌊
1 1 1
1 1 1
1 1 1

⌋ (9)

Given the use of equal weights, this can be done using much simpler algorithms. [15].

Code fade: In the main.cpp file, we will load and save the images and call the filter:

int main(int argc, char** argv) {

if(argc != 3) {

std::cout << "Run with input and output image filenames." << std::endl;

return 0;

}

const char* input_file = argv[1];

const char* output_file = argv;

 std::vector<unsigned char> in_image;

unsigned int width, height;

unsigned error = lodepng::decode(in_image, width, height, input_file);

if(error) std::cout << "decoder error " << error << ": " << lodepng_error_text(error) << std::endl;

unsigned char* input_image = new unsigned char[(in_image.size()*3)/4];

unsigned char* output_image = new unsigned char[(in_image.size()*3)/4];

int where = 0;

for(int i = 0; i < in_image.size(); ++i) {

if((i+1) % 4 != 0) {

input_image[where] = in_image.at(i);

INTERNATIONAL JOURNAL OF ENGINEERING EDUCATION (IJEE)
ISSN: 0949-149X May-June2017 Vole 9, No 3
www.sweetmaxwell.org

output_image[where] = 255;

where++; } }

filter(input_image, output_image, width, height); // filtering

 std::vector<unsigned char> out_image;

for(int i = 0; i < in_image.size(); ++i) {

out_image.push_back(output_image[i]);

if((i+1) % 3 == 0) {

out_image.push_back(255); } }

error = lodepng::encode(output_file, out_image, width, height);

if(error) std::cout << "encoder error " << error << ": "<< lodepng_error_text(error) << std::endl;

delete[] input_image;

delete[] output_image;

return 0; }[17]

This function converts the image into a vector then we filter the image information into the filter

function (the filter function loads the information in the graphics processor and invokes the cuda

core function that executes the filter). We will ultimately store and remove the image [17].

void filter (unsigned char* input_image, unsigned char* output_image, int width, int height) {

unsigned char* dev_input;

unsigned char* dev_output;

getError(cudaMalloc((void**) &dev_input, width*height*3*sizeof(unsigned char)));

getError(cudaMemcpy(dev_input, input_image, width*height*3*sizeof(unsigned char),

cudaMemcpyHostToDevice));

getError(cudaMalloc((void**) &dev_output, width*height*3*sizeof(unsigned char)));

dim3 blockDims(512,1,1);

dim3 gridDims((unsigned int) ceil((double)(width*height*3/blockDims.x)), 1, 1);

filter<<<gridDims, blockDims>>>(dev_input, dev_output, width, height);

getError(cudaMemcpy(output_image, dev_output, width*height*3*sizeof(unsigned char),

cudaMemcpyDeviceToHost));

getError(cudaFree(dev_input));

getError(cudaFree(dev_output)); }

In the above function we copy and paste the data into a graphic processor. The information is in

the graphics processor to allow readability by the kernel. Memory is allocated to the output image

and to the filter result position. This function is located in kernels.cu [12]. In this part of the

program for each pixel the input image gains the average pixels of all its neighbors and we write

in the output image.

__global__void blur(unsigned char* input_image, unsigned char* output_image, int width, int height) {

const unsigned int offset = blockIdx.x*blockDim.x + threadIdx.x;

int x = offset % width;

int y = (offset-x)/width;

int fsize = 5; // Filter size

if(offset < width*height) {

INTERNATIONAL JOURNAL OF ENGINEERING EDUCATION (IJEE)
ISSN: 0949-149X May-June2017 Vole 9, No 3
www.sweetmaxwell.org

float output_red = 0;

float output_green = 0;

float output_blue = 0;

int hits = 0;

for(int ox = -fsize; ox < fsize+1; ++ox) {

for(int oy = -fsize; oy < fsize+1; ++oy) {

if((x+ox) > -1 && (x+ox) < width && (y+oy) > -1 && (y+oy) < height) {

const int currentoffset = (offset+ox+oy*width)*3;

output_red += input_image[currentoffset];

output_green += input_image[currentoffset+1];

output_blue += input_image[currentoffset+2];

hits++; } } }

output_image[offset*3] = output_red/hits;

output_image[offset*3+1] = output_green/hits;

output_image[offset*3+2] = output_blue/hits;} }

4 - Gaussian Blur

Image smoothing is a type of convolution that is often used to reduce interference and image details

and this process is often done by a low pass filter. The filter stores low frequency frequencies while

decreasing high frequency values. In fact the image is smooth by reducing the imbalance between

pixels [12]. Image smoothing is sometimes used as a preprocessor for other operations on the

image and most commonly, Image smoothing is used to reduce interference before applying a

border detection algorithm. smoothing can be applied repeatedly to an image in order to obtain the

desired effect [12].

An easy way to achieve smoothing is to use the mean filter. This idea is expressed by replacing

each pixel with the mean of all neighboring pixels. One of the benefits of this is its simplicity and

speed. However the main drawback of this method is the remote locations, especially those that

have the furthest distance from the pixel and can give a false view of the average neighbors' ture

[13]. Another way of smoothing is an image using gaussian blur. This method is a high level

smoothing of images because it reduces the amount of high frequencies corresponding to its

frequency and gives less weight to pixels away from the center of the window [13]. The gaussian

function is defined as:

G(x, y) =
1

2𝜋𝜎2 𝑒
−

𝑥2 + 𝑦2

2𝜎2 (10)

In this equation the parameters are as follows:

σ: the fading factor increases if the image is smoothing. E: Euler number, x: Horizontal distance

from center pixel, y: Vertical distance from center pixel given this equation the x and y distances

for the central pixel will be zero. While the distance from the center pixel increases by x2 + y2 and

the weight decreases [7].

INTERNATIONAL JOURNAL OF ENGINEERING EDUCATION (IJEE)
ISSN: 0949-149X May-June2017 Vole 9, No 3
www.sweetmaxwell.org

(Fig. 1): the discrete nucleus in (0,0) and 1 = σ

4-1 Identify Sobel Edge Detection

Edge detection is a common method of image processing that is used to detect and extract features.

Edge detection in an image can significantly reduce the amount of information needed for

processing in the next step, while maintaining the original structure of the image. Not be An idea

in this regard is to remove everything from the image except the pixels that are part of the edge.

These edges have special properties such as corners, lines, curves and so on. A set of these

properties or attributes can be used to achieve a larger image in image smoothing. The edge can

be detected by local variation of the intensity of the image. The edge usually divides the image

into two different areas. Most edge detection algorithms work best on the image on which the

interception method is applied. Today's practices use differential operators and high-pass filters

[12]. A simple edge detection algorithm adopts the Sobel edge detection algorithm which involves

the convolving the image using the correct value filter which is both simple and inexpensive in

calculations. The Sobel filter is defined as:

S1 = [
−1 0 +1
−2 0 +2
−1 0 +1

] , S2 = [
−1 −2 −1
0 0 0

+1 +2 +1
] (11)

To apply the Sobel algorithm on the image, first we find the approximate derivatives by keeping

the horizontal and vertical directions. If we assume that A is the original image, Gx is the derivative

of the derivative in the horizontal axis and Gy is the derivative approximation in the vertical axis:

Gy = S1. B , Gx = S1. A (12)

The resulting gradient image is a combination of Gx and Gy. Each pixel G (x, y) of the resulting

image can be computed by considering the size of Gx and Gy and the gradients of the direction

are calculated as follows:

θ = tan−1 Gy

Gx
 , G(x, y) = √𝐺𝑥

2 + 𝐺𝑦
2 (13)

Finally, to determine whether a pixel of the original image A is part of the edge, we follow the

following process: if G (x, y) is bigger than the threshold value then A (x, y) is a part of the edge

[12].

4-2 JPEG compression

as I said, one of the applications of image processing is compression of images. One of the ways

to make it in images is JPEG compression developed by a group of photographic specialists to

compress non-graphic images (in particular photographs). This group was organized in 1986 and

INTERNATIONAL JOURNAL OF ENGINEERING EDUCATION (IJEE)
ISSN: 0949-149X May-June2017 Vole 9, No 3
www.sweetmaxwell.org

published the JPEG standard in 1992 and In 1994, it was approved as a standard in ISO [16]. This

algorithm is based on the fact that the human eye does not see colors at high frequencies [13]. The

importance of this algorithm is that the most important compression standard for motion pictures,

MPEG, is in fact nothing other than the coding of successive JPEG frames which is an algorithm

of various types of compression techniques and consequently the image after a single decryption

and encryption step with a slight original image The difference is based on the rate of compression.

The JPEG method works based on the DCT conversion and also uses variable length encryption

methods such as huffnan encryption.

4-2-1 compression process

The steps for converting a raw image into a JPEG image are:

block preparation, discrete cosine transform, quantization, zigzag scan, run-length encoding,

differential scaling, statistical coding.

(Fig. 2): image compression and decompression steps [15]

5. Conclusion

In order to speed up the implementation the GPU was introduced, followed by the parallel

programming of the Cuda. This paper attempts to introduce the knapsack problem the ways

presented for it the code for its program in cuda, image processing, image cropping, cuda

programming, fading the box, compressing images and the importance of programming cuda is in

the presentation of this content.

Refrences:

[1]: Taziki, M., Javadian. (1391), Provide a meta-innovative algorithm for solving a two-dimensional

backbone with rectangularces.

[2] Amaral, A., Letchford, A.N. (2001). An improved upper bound for the two-dimensional non-

guillotine cutting problem, Technical report, Lancaster University, UK.

[3]Arenales, M., Morabito, R. (1995). An and/or-graph approach to the solution of two

dimensional guillotine cutting problems, European Journal of Operational Research 84, 599–

617.

[4]Beasley, J.E. (1985). Algorithms for unconstrained two-dimensional guillotine cutting, Journal

of the Operational Research Society 36, 297–306.

INTERNATIONAL JOURNAL OF ENGINEERING EDUCATION (IJEE)
ISSN: 0949-149X May-June2017 Vole 9, No 3
www.sweetmaxwell.org

[5] Beasley, J.E. (1990). Or-library: Distributing test problems by electronic mail, Journal of the

Operational Research Society.

[6]B.Kirk, D. (2006-2008). NVIDIA CUDA Software and GPU Parallel Computing Architecture.

CUDA C PROGRAMMING GUIDE. (2012). www.nvidia.com.

[7]Bozkurt, F., Yağanoğlu, M., Baturalp Günay, F. (2015). Effective Gaussian Blurring Process

on Graphics Processing Unit with CUDA.

[8] Pisinger, D. (2003). Where are the hard knapsack problems?. Department of Computer Science,

University of Copenhagen, Copenhagen, Denmark.

[9] Mathews ,G. B., (25 June 1989) "On the partition of numbers", Proceedings of the London

Mathematical Society 28, 486–490.

[10]G.Hammer, Gallo;P.L, Simeone. (1980). "Quadratic knapsack problems", Mathematical

Programming Studies 12: 132–149.

[11]GIOT, Ir.Rudi., Abilio RODRIGUES E SOUSA, Ing. (2012). Image processing algorithm

withCUDA for Pure Data. CUDA C PROGRAMMING GUID, www.nvidia.com. Cook,

ShaneCUDA PROGRAMMING. (2013), 13-45.

[12]Tse, J. (2012). IMAGE PROCESSING WITH CUDA, 30-34.

[13]Marcus, M. (2014). JPEG Image Compression.

[14]Shaban AL-Ani, M., Hammadi Awad, F. (2013). THE JPEG IMAGE COMPRESSION

ALGORITHM, International Journal of Advances in Engineering & Technology.

[15]Jarosz, W. (2001), Fast Image Convolutions.

[16] https://jpeg.org/jpeg/index.html.

[17] http://madsravn.dk/posts/simple-image-processing-with-cuda. www.stackoverflow. com.

https://github.com.

file:///C:/Users/fatemeh/Desktop/www.nvidia.com
file:///C:/Users/fatemeh/Desktop/www.nvidia.com
https://jpeg.org/jpeg/index.html
http://madsravn.dk/posts/simple-image-processing-with-cuda
https://github.com/

